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Abstract: We study spectral flow preserving four-point correlation functions in the AdS3-

WZNW model using the Coulomb gas method on the sphere. We present a multiple

integral realization of the conformal blocks and explicitly compute amplitudes involving

operators with quantized values of the sum of their spins, i.e., requiring an integer number

of screening charges of the first kind. The result is given as a sum over the independent

configurations of screening contours yielding a monodromy invariant expansion in powers

of the worldsheet moduli. We then examine the factorization limit and show that the

leading terms in the sum can be identified, in the semiclassical limit, with products of

spectral flow conserving three-point functions. These terms can be rewritten as the m-basis

version of the integral expression obtained by J. Teschner from a postulate for the operator

product expansion of normalizable states in the H+
3 -WZNW model. Finally, we determine

the equivalence between the factorizations of a particular set of four-point functions into

products of two three-point functions either preserving or violating spectral flow number

conservation. Based on this analysis we argue that the expression for the amplitude as an

integral over the spin of the intermediate operators holds beyond the semiclassical regime,

thus corroborating that spectral flow conserving correlators in the AdS3-WZNW model are

related by analytic continuation to correlation functions in the H+
3 -WZNW model.
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1 Introduction

In this article we continue the task, started in [1], of computing correlation functions in

the AdS3-WZNW model within the Coulomb gas approach. In our first paper we used

the Wakimoto representation to evaluate both the spectral flow conserving and violating

three-point functions of this theory on the sphere and we showed that a proper analytic

continuation to non-integer numbers of screening operators gives amplitudes in full agree-

ment with the exact results previously obtained in [2–4]. Here we focus on the spectral

flow conserving four-point functions.

Among the many motivations for considering these correlators we can mention their

applications to string theory on AdS3 and the AdS/CFT correspondence as well as further

examining the AdS3-WZNW model as a prototype of non-rational conformal field theory

(CFT) with affine Lie algebra symmetry, having close connections with Liouville theory

as well as with two and three dimensional gravity. Renewed interest in the study of the

conformal blocks originates in the recent developments presented in [5] (see also [6]) where

it is conjectured that the conformal blocks of Liouville theory are related to the Nekrasov

partition function of a certain class of N = 2 superconformal field theories [7, 8].

Most of what is known about the AdS3-WZNW model is based on the analytic contin-

uation from its better understood Euclidean counterpart. The solution of the H+
3 -WZNW

model on the sphere was achieved in [2, 3] through a generalization of the chiral bootstrap
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program and more recently it was further explored by means of its relation to Liouville

theory [9]. Specifically, it was proved that arbitrary correlation functions on the sphere

can be expressed in terms of correlators in Liouville theory which is so far the best un-

derstood example of non-rational CFT [10–12]. However, there are many subtleties in the

analytic continuation relating the H+
3 and the AdS3 models. In particular, the spectral

flow automorphism of the latter is a highly non-trivial feature determining a fundamental

problem in the application of the bootstrap program. Namely, while the contributions of

primary states to the operator product expansion (OPE) in the H+
3 model are sufficient

to complete this program, the descendants not being strictly necessary, the spectral flow

operation generates new representations in which the conformal weights are not bounded

below, and thus the implementation of the bootstrap approach in the AdS3 model requires

a better understanding of the interplay between different spectral flow sectors and possibly

the explicit computation of correlation functions involving affine descentant fields.

Observables in the SL(2, C)/SU(2) ≡ H+
3 -WZNW model are given by normalizable

functions on the hyperbolic space, having the following form in terms of Poincaré coordi-

nates (φ, γ, γ):

Φj(x, x|z, z) =
1 + 2j

π

(
e
−

q

1
2(k−2)

φ
+ |γ − x|2e

q

1
2(k−2)

φ
)2j

, (1.1)

where k is the affine level of the algebra, j labels the spin of the state, (z, z) are the

worldsheet coordinates and (x, x) keep track of the SL(2, C) quantum numbers. The Hilbert

space of this theory is the direct sum of its affine representations with primary states

having conformal weights given by ∆j = j(j + 1)ρ, where j ∈ P+ ≡ −1/2 + iR>0 and

ρ = −(k − 2)−1 [13].

Two- and three-point functions involving these operators were obtained in [2, 3] solving

the differential equations satisfied by degenerate fields of admissible representations. Based

on a proposal for the OPE of normalizable primary fields and on a rigorous treatment in

the mini-superspace approximation [14], an expression for the four-point function was also

presented in [2, 3]. It involves an integral over a continuous family of solutions of the

Knizhnik-Zamolodchikov (KZ) equation, namely,

〈Φj1(0)Φj2(x, x|z, z)Φj3(1)Φj4(∞)〉 =

∫

P

dj D(j1, j2, j)D(j4, j3, j)B(j)−1|Fj(x|z)|2, (1.2)

where P ≡ −1/2 + iR, D(j1, j2, j) and D(j4, j3, j) are the structure constants, B(j)

is the propagator of the intermediate state1 and the conformal blocks have the follow-

ing expansion:

Fj(x|z) = z∆j−∆j1
−∆j2 xj−j1−j2

∞∑

n=0

fn(x)zn. (1.3)

Substituting this expression into the KZ equation it is found that f0(x) obeys the hypergeo-

metric equation so that, after imposing monodromy invariance, it is univocally determined.2

1These functions are explicitly given below in (2.4) and (3.8).
2Actually, there are two well-defined independent contributions to the conformal blocks related by the

reflection symmetry and monodromy invariance requires including both of them. The extension of the

domain of integration from P
+ to P allows to keep only one of these contributions.

– 2 –



J
H
E
P
1
1
(
2
0
0
9
)
0
9
0

All other fn(x) can be iteratively computed as stated in [3].

Equation (1.2) holds for operators with spins in the following domain:

{
|Re(j1 + j2 + 1)| < 1

2 , |Re(j3 + j4 + 1)| < 1
2 ,

|Re(j1 − j2)| < 1
2 , |Re(j3 − j4)| < 1

2 .

For other values of the spins there are poles in the integrand that hit the contour of

integration and the four-point function must be defined by analytic continuation. Crossing

symmetry was shown to follow from similar properties of a related five-point function in

Liouville theory [15]. The amplitude (1.2) was further studied in the context of string

theory on AdS3 in [4] where, after integrating over the moduli space of the worldsheet, it

was written as a sum of products of three-point functions summed over intermediate states

lying in the physical spectrum.

The Hilbert space of the AdS3-WZNW model [16] is very different from that of the

Euclidean model. It decomposes into direct products of the normalizable continuous and

highest-weight discrete representations of the universal cover of the affine SL(2, R) algebra

and their spectral flow images, namely, Ĉα,w
j ⊗ Ĉα,w

j with j ∈ P+ and α ∈ [0, 1), and

D̂−,w
j ⊗ D̂−,w

j with −(k − 1)/2 < j < −1/2. The spectral flow parameter w is an integer

number. All the states in the spectrum, except those lying in the unflowed continuous

representations, correspond to non-normalizable operators in the H+
3 -WZNW model. In

order to deal with highest-weight as well as spectral flowed representations it is convenient

to work in a basis where the generators J3
0 , J

3
0 are diagonalized. This is the so-called

m-basis. Unflowed operators in the m-basis are related to (1.1) through the following

integral transform:

Φj
m,m(z, z) =

∫
d2xxj−mxj−mΦ−1−j(x, x|z, z), (1.4)

where m, m represent the eigenvalues of J3
0 , J

3
0, respectively, and m − m ∈ Z. States in

D̂−,w
j (Ĉα,w

j ) have m,m = j −N0 (m,m = α + Z). The spectral flow images of the primary

states are obtained from (1.4) acting with the spectral flow operators Φ
−k/2
±k/2,±k/2 [4, 16]

and they have conformal weight ∆̂j,m,w = ∆j − mw − kw2/4.

Definite expressions for two- and three-point correlation functions of unflowed oper-

ators were given in [17] performing the integral transform from the x-basis results of the

H+
3 -WZNW model and analytically continuing the kinematical parameters. The accuracy

of the analytic continuation is supported by the fact that it leads to the well-known fusion

rules for admissible representations [2] and to the classical tensor products of representa-

tions of SL(2, R) [17].

Concerning the applications to string theory, this analytic continuation was the start-

ing point for a physical interpretation of the worldsheet correlation functions in terms of

correlators in the boundary CFT and for the analysis of the factorization of four-point func-

tions involving unflowed short string states in [4]. Amplitudes involving spectral flowed

operators were evaluated transforming to the m-basis the two- and three-point functions

of the H+
3 -WZNW model and acting with the spectral flow operator. This process was

– 3 –
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applied, in particular, to obtain the w = 1 three-point function from a special four-point

function containing one spectral flow operator.3 The problem with applying this procedure

to (1.2) is that the KZ equation implies the existence of singularities at z = 0, 1, x and ∞,

which together with monodromy invariance require that the amplitude behaves as

〈Φj1(0)Φj2(x, x|z, z)Φj3(1)Φj4(∞)〉 ∼ |z − x|2(k+j1+j2+j3+j4),

and, thus, the expansion in (1.3) converges, in principle, only for |z| < |x|. Integrals (1.4)

transforming to the m-picture can be done either term by term in the expansion in powers

of z or with the full correlator obtained by summing all the descendant contributions, but

it is not clear that summation and integration will commute or that the sum of integrals

over x will converge.

In the sequel we present an independent derivation of the four-point function in the

AdS3-WZNW model directly in the m-basis. This basis has the advantage that correlators

of fields with different amount of spectral flow can be treated simultaneously, i.e., all w-

conserving amplitudes are the same except for a known factor depending on the insertion

points of the vertex operators. We use the Coulomb gas method, which provides a well

defined framework within which it should be possible to address this question.

Unlike the successful applications to the minimal models [18] and the SU(2)-WZNW

model for operators with half-integer spins [19], the scope of the background charge method

in theories with continuous sets of primary fields appears to be limited because they nec-

essarily require non-integer numbers of screening operators. The basic difficulty in going

away from half integer SU(2)-like spins is that one no longer deals with degenerate fields

satisfying null vector equations. A related problem arose in the evaluation of amplitudes

involving operators with rational spins in admissible representations of the SU(2)-WZNW

model [19], which could not be accomplished due to the necessity of considering screen-

ing currents with rational powers of the ghost fields and the related ambiguity arising

in the analytic continuation to non-integer numbers of screening charges.4 Nevertheless,

the formalism has played an important role in the resolution of Liouville theory where

an analytic continuation for the three-point function was originally defined in [23] (see

also [10, 24, 25]). Similarly, it was shown that the multiple Coulomb integrals define the

residues of the on-mass-shell three-point functions not only in Liouville theory but also

in Toda CFT [26]. More recently, the suggestion in [5] relating the conformal blocks in

Liouville theory and Nekrasov’s partition functions revives the longstanding idea that all

conformal field theories can be effectively described in the free field formalism [27] because

both Dotsenko-Fateev integrals and Nekrasov’s functions provide a basis for generalized

hypergeometric integrals.

In the case of the AdS3-WZNW model full agreement was found in [1]5 among the exact

three-point functions, both preserving and violating w-number conservation, and those

computed via the free field approach for generic values of j. The analytic continuation

to non-integer numbers of screening charges was performed in [1] by noticing that the

3A related computation was performed within the Coulomb gas formalism in [1].
4See also [20–22] for alternative approaches using free field representations.
5See [28, 29] for previous related work.
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coefficients in the discrete sums arising from the contractions of the β-γ ghost fields can be

written in terms of hypergeometric functions which have to be supplemented with an extra

contribution determined by monodromy invariance. Defining an unambiguous analytic

continuation procedure should open up the possibility of studying arbitrary correlation

functions using the Coulomb gas picture for general spins and for any real value of the

algebra level. In this paper we move one step forward and extend the techniques developed

in our first work to address the computation of w-conserving four-point functions. In

particular, we show that there is an alternative representation of the discrete sums arising

from the monodromy invariant combination of chiral and anti-chiral conformal blocks in

terms of an integral reproducing the m-basis expression which is obtained after applying

the transformation (1.4) to (1.2).

As mentioned above, (1.2) was obtained from the OPE of normalizable states in the

H+
3 -WZNW model applying the factorization ansatz. But the OPE proposed in [2, 3]

would yield an incorrect zero answer if used to compute, for example, w-violating three-

point functions in the AdS3 model; in other words, relaxing the semiclassical approximation

in the Lorentzian model is more elusive than in the Euclidean one. Indeed, it was argued

in [30] (see also [31]) that a modified OPE should be considered in the former theory

including both w-preserving and non-preserving structure constants and it was pointed

out that this prescription gives fusion rules of physical states consistent with the spectral

flow symmetry and determining the closure of the operator algebra on the Hilbert space of

the theory. Consequently, the factorization ansatz would lead to a modified expression for

the four-point functions containing both sets of structure constants. However, relying on a

plausible but hypothetical identity between two sets of four-point functions, it was shown

in [30] that both channels give equivalent contributions for certain w-conserving amplitudes

and it was argued that this must also be the case for all w-conserving four-point functions.

Here we complete the proof of that identity using the Coulomb gas approach. Actually

we show that the Coulomb integral realizations of these two sets of amplitudes agree, thus

providing new evidence to support the claim in [30]. This also allows us to conjecture that

the results obtained for the four-point functions in the semiclassical limit hold for generic

affine level.

The paper is organized as follows. In section 2 we compute spectral flow conserving

four-point functions using the Coulomb gas method for spin configurations requiring an

integer number of screening operators. In section 3 we examine the factorization limit and

show that the leading terms in the expansion of the amplitude in powers of the worldsheet

moduli can be written, in the semiclassical regime, as the m-basis version of Teschner’s

integral expression for the H+
3 -WZNW model. We also prove an identity between two sets

of four-point functions which allows to show that the factorization into spectral flow con-

serving or violating three-point functions give equivalent contributions to these amplitudes

and to suggest that the results obtained for the analytic continuation hold for arbitrary

affine level. A summary and discussions are included in section 4. Some technical details

and other computations are contained in the appendices.

– 5 –
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2 Coulomb gas computation of four-point functions

In this section we evaluate w-conserving four-point functions involving spectral flow images

of primary fields in the AdS3-WZNW model using the Coulomb gas method.

Within this formalism, the relevant expectation values are of the form (see [1]):

Aw=0
4




j1, j2, j3, j4

m1,m2,m3,m4

w1, w2, w3, w4


 =

〈
4∏

i=1

V ji,wi

mi,mi
(zi, zi)

N+∏

a=1

η+(ζ+
a , ζ

+
a )

N−∏

b=1

η−(ζ−b , ζ
−

b )Qs1
1 Qs2

2

〉
, (2.1)

where the vertices are given by

V j,w
m,m(z, z) =

[
e(j−m−w)u(z)e−i(j−m)v(z) × c.c.

]
e

q

2
k−2(j+ k−2

2
w)φ(z,z̄)

, (2.2)

the screening operators of the first and second kind are, respectively,

Q1 =

∫
d2y

[
∂v(y)e−u(y)+iv(y) × c.c.

]
e
−

q

2
k−2

φ(y,y)
,

and

Q2 =

∫
d2y

[
∂v(y)e−u(y)+iv(y) × c.c.

]k−2
e−

√
2(k−2)φ(y,y) ,

and the spectral flow vertices act as picture changing operators for the spectral flow sectors

and have the following form:

η+(ζ, ζ) =
1

πΓ(0)

[
e(k−2)u(ζ)e−i(k−1)v(ζ) × c.c.

]
e
√

2(k−2)φ(ζ,ζ),

η−(ζ, ζ) =
1

πΓ(0)

[
eiv(ζ) × c.c.

]
.

These spectral flow operators were introduced in [1] where it was proved that they re-

produce, when inserted into multi-point amplitudes, the prescription proposed in [32] and

applied in [4] to compute correlators involving spectral flowed states.

Here and thereafter “c.c.” indicates that all the variables have to be replaced by the

barred ones.

The vertex operators (2.2) are related, in the unflowed case and in the large-φ limit,

to those defined by (1.4) through

Φj
m,m(z, z) = V j

m,m(z, z) + B(−1 − j)c−1−j
m,m V −1−j

m,m (z, z), (2.3)

where

B(j) = −1 + 2j

π
ν1+2j Γ(1 − ρ(1 + 2j))

Γ(1 + ρ(1 + 2j))
, ν = π

Γ(1 + ρ)

Γ(1 − ρ)
, (2.4)

and

cj
m,m = πγ(1 + 2j)

Γ(−j − m)Γ(−j + m)

Γ(1 + j − m)Γ(1 + j + m)
, γ(x) =

Γ(x)

Γ(1 − x)
.

– 6 –
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The charge asymmetry conditions for the free field expectation values in (2.1) are

given by

4∑

n=1

jn = s1 + (k − 2)

[
s2 −

N+ + N−

2

]
− 1 , (2.5)

4∑

n=1

mn =

4∑

n=1

mn =
k

2
(N+ − N−),

4∑

n=0

wn = N− − N+. (2.6)

As expected, for w-conserving amplitudes we must take N+ = N−.

Notice from (2.5) that Q2, which only makes sense for k ∈ N>2, screens exactly the

charge carried by a couple of spectral flow operators of each kind. On the other hand, since

correlation functions in the m-basis depend on the total w-number and the only change in

w-conserving correlators involving states in different spectral flow sectors is contained in

the powers of the worldsheet coordinates, assuming wi = 0 for i = 1, . . . , 4, does not imply

any loss of generality and we can further take N+ = N− = 0.

Only correlators with vertices requiring positive integer numbers of screenings, namely,

s1, s2 ∈ N0, can be directly computed in this formalism. Correlation functions involving

operators in continuous representations or their spectral flow images cannot be considered

at once in this picture because one cannot choose the imaginary parts of the spins in both

terms of (2.3) so that they add up to zero in all the terms of the full amplitude. Instead, the

second term of the vertex operators creating states in discrete representations vanishes6

and therefore, the number of charges needed to screen four operators in discrete series

turns out to be negative, due to the values of the spins. Negative powers of screenings have

been considered in Liouville theory [24, 25] and it was shown that there exists a consistent

extension of the formalism to deal with this situation. Alternatively, one can use the

reflection symmetry in order to work with positive numbers of screenings. In the sequel

we adopt the latter option. In conclusion, only certain states with particular spin values

in discrete representations can satisfy equation (2.5) and results for generic configurations

require analytic continuation. Therefore, we can take s2 = 0 without loosing generality,

and thus k ∈ R>2.

Summarizing, in this section we evaluate four-point correlation functions involving

operators in the unflowed principal discrete representations with s2 = 0, N+ = N− =

0, namely,

Aw=0
4

[
j1, j2, j3, j4

m1,m2,m3,m4

]
≡ Γ(−s)

〈
V j1,w1=0

m1,m1
(0)V j2,w2=0

m2,m2
(z, z)V j3,w3=0

m3,m3
(1)V j4,w4=0

m4,m4
(+∞)Qs

1

〉
,

(2.7)

6See [33] for a discussion on the different asymptotic behaviours of operators in highest-weight or con-

tinuous representations.
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where s ≡ s1 = j1 + · · · + j4 + 1 ∈ N0. The spectral flow labels in the arguments on the

l.h.s. are omitted for short,7 w refers to the total spectral flow number of the amplitude

and global conformal invariance was used in order to set z1, z1 = 0, z2 = z, z2 = z,

z3, z3 = 1 and z4, z4 = ∞. The factor Γ(−s) arises from the integration of the zero

modes of φ(z, z); by abuse of notation, we also denote the vertex operators as V j,w
m,m after

performing this integration.

The corresponding field contractions give:

Aw=0
4

[
j1, j2, j3, j4

m1,m2,m3,m4

]
= Γ(−s)|z|4j1j2ρ|1 − z|4j2j3ρ

∫
[dy]

s∏

i=1

|yi|−4j1ρ|z − yi|−4j2ρ

×|1 − yi|−4j3ρ
s∏

j>i

|yi − yj|4ρ

[
1

P
∂1 · · · ∂sP × c.c.

]
, (2.8)

where [dy] is a shorthand for
∏s

i=1 d2yi, ∂i ≡ ∂/∂yi, and

P =
s∏

i=1

y−j1+m1
i (z − yi)

−j2+m2(1 − yi)
−j3+m3

s∏

j>i

(yi − yj) (2.9)

is the contribution from the (holomorphic) ghost system. Recall that the field φ and the

free bosons u and v, which bosonize the usual β-γ ghost system, have propagators:

〈u(z)u(w)〉 = 〈v(z)v(w)〉 = 〈φ(z)φ(w)〉 = −log(z − w),

and similar expressions hold for the anti-holomorphic components.

In the next subsection we compute the ghost contributions and then we proceed to the

evaluation of the Coulomb integrals.

2.1 Contributions from the ghost system

It is convenient to recall the definition of the Vandermonde determinant:

s∏

i=1

s∏

j>i

(yi − yj) = det
(
yj−1

i

)
,

and use it to rewrite (2.9) as follows:

P = det
[
(z − yi)

−j2+m2(1 − yi)
−j3+m3yj−1−j1+m1

i

]
.

Taking derivatives as

∂1 · · · ∂sP = det
{
∂i

[
(z − yi)

−j2+m2(1 − yi)
−j3+m3yj−1−j1+m1

i

]}

=

[
s∏

i=1

y−j1+m1−1
i (z − yi)

−j2+m2−1(1 − yi)
−j3+m3−1

]
det

[
2∑

l=0

ℓj
l (z)yj−1+l

i

]
,

7We shall explicitly write these labels in section 3, when the spectral flow numbers of the operators

become relevant.
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we can write

1

P
∂1 · · · ∂sP =

[
s∏

i=1

y−1
i (z − yi)

−1(1 − yi)
−1

]
det
[∑2

l=0 ℓj
l (z)yj−1+l

i

]

det
(
yj−1

i

) , (2.10)

where we have introduced:




ℓj
0(z) = (j − 1 − j1 + m1)z,

ℓj
1(z) = 1 − j + j1 + j2 − m1 − m2 + (1 − j + j1 + j3 − m1 − m3)z,

ℓj
2(z) = j − 1 − j1 − j2 − j3 + m1 + m2 + m3.

Notice that the entries of the matrix in the numerator are three term polynomials

in the screening variables with powers exceeding in 2, 1 and 0 units the corresponding

powers of the entries of the matrix in the denominator. Using the multilinearity of the

determinants and performing all the distributions we get

det

[
2∑

l=0

ℓj
l (z)yj−1+l

i

]
=

∑

λ∈[0,2]s

det
[
ℓj
λs+1−j

(z)y
j−1+λs+1−j

i

]

=
∑

λ∈[0,2]s




s∏

j=1

ℓj
λs+1−j

(z)


 det

(
y

j−1+λs+1−j

i

)
,

where the sum index λ is the s-tuple whose components give the excedent in power of

the matrix elements with respect to those of the Vandermonde determinant, in the inverse

order. Thus the quotient of determinants in (2.10) looks like the one defining Schur poly-

nomials, except for the fact that λ is not a partition but an s-tuple with entries taking the

values 0, 1 and 2. Nevertheless, we shall show that it is possible to rewrite (2.10) so as to

sum only over partitions.

The s-tuples of the form (. . . , 0, 1, . . . ) or (. . . , 1, 2, . . . ) give no contribution to the

quotient in (2.10) since the determinant in the numerator vanishes, and thus the sum

is over partitions except for the case of s-tuples of the form (. . . , 0, 2, . . . ). But in this

case neither the s-tuples of the form (. . . , 0, 2, 2, . . . ) nor those of the form (. . . , 0, 0, 2, . . . )

contribute because, again, the determinant in the numerator vanishes. Consequently, only

the following s-tuples are relevant:

λ = (2, . . . , 2, 1, . . . , 1, 0, 2, 1, . . . , 1, 0, 2, 1, . . . , 1, 0, . . . , 0) . (2.11)

Since the interchange of two columns in a determinant only changes its overall sign, the

quotient of determinants in (2.10) associated with the s-tuple (2.11) is equal to the Schur

polynomial associated to the partition (2, . . . , 2, 1, . . . , 1, 0, . . . , 0) up to a factor (±1) de-

pending on the number of times the subsequence “. . . , 0, 2, . . . ” is replaced by “. . . , 1, 1, . . . ”

in (2.11) in order to obtain a partition. This implies that we can actually write

det
[∑2

l=0 ℓj
l (z)yj−1+l

i

]

det
(
yj−1

i

) =
∑

λ

Cλ(z)sλ(y1, . . . , ys),

– 9 –



J
H
E
P
1
1
(
2
0
0
9
)
0
9
0

where now the sum is over partitions of length s and entries 0, 1 or 2. These partitions

are characterized by two integer numbers, say n and r, denoting the number of times the

entries 2 and 1 appear, respectively. Let us write Cnr(z) instead of Cλ(z) and snr(y1, . . . , ys)

instead of sλ(y1, . . . , ys). We then have:

1

P
∂1 · · · ∂sP =

[
s∏

i=1

y−1
i (z − yi)

−1(1 − yi)
−1

]
s∑

n=0

s−n∑

r=0

Cnr(z)snr(y1, . . . , ys),

so that the four-point function (2.8) may be rewritten as

Aw=0
4

[
j1, j2, j3, j4

m1,m2,m3,m4

]
= Γ(−s)|z|4j1j2ρ|1 − z|4j2j3ρ

s∑

n,n=0

s−n∑

r,r=0

[Cnr(z) × c.c.]Jnr,nr(z, z),

where Jnr,nr(z, z) are the following generalized Selberg complex integrals:

Jnr,nr(z, z) =

∫
[dy]

s∏

i=1

|yi|−4j1ρ−2|z − yi|−4j2ρ−2 × |1 − yi|−4j3ρ−2
s∏

i<j

|yi − yj |4ρ

×snr(y1, . . . , ys)snr(y1, . . . , ys). (2.12)

Therefore, the problem has been reduced to two independent calculations, namely,

obtaining the coefficients Cnr(z) and performing the computation of the Coulomb integrals

Jnr,nr(z, z). The coefficients Cnr(z) are computed in the appendix A.1. They involve

complicated hypergeometric-like expansions with polynomials as arguments (see (A.5)). In

the following subsection we compute them assuming that a highest-weight state is inserted

at z1, z1 = 0; many simplifications occur in this case and this allows us to deal with the

Coulomb integrals in subsection 2.3.

2.2 Evaluation of m-dependent coefficients: one highest-weight state

Explicitly evaluating the terms contributing to Cnr(z) in (2.10) for different values of n

and r, it can be shown that

Cnr(z) = (−1)s−n−rzs−n−r Γ(α + 1)

Γ(α − s + n + r + 1)

Γ(s − α − β − γ)

Γ(s − n − α − β − γ)
ds−n(z), (2.13)

where we have defined 



α = j1 − m1,

β = j2 − m2,

γ = j3 − m3,

ds−n(z) is the determinant of the matrix (aij(z))s−n
i,j=1 with entries given by

aij(z) = ℓs−n−r+j
i−j+1 (z), (2.14)

and we are setting aij(z) = 0 if |i − j| > 1.

As we have mentioned, many simplifications occur if the operator inserted at z1, z1 = 0

creates a highest-weight state, so from here on we assume j1 = m1. In appendix A.1 we

present the computation in full generality.
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The coefficients Cnr(z) vanish when α = 0 unless r = s − n and in this case we have

Cn(z) ≡ Cnr=s−n(z) =
Γ(s − β − γ)

Γ(s − n − β − γ)
d0

s−n(z),

where d0
s−n(z) is the determinant of the matrix (a0

ij(z))s−n
i,j=1 with elements a0

ij(z) = ℓj
i−j+1(z).

Let us denote by d0
p(z), p = 1, 2, . . . , s − n, the determinant of the matrix (a0

ij(z))pi,j=1

formed by the first p rows and p columns of (a0
ij(z))s−n

i,j=1. Notice that d0
p(z) is a polynomial

in z of degree p satisfying the following recurrence formula:

d0
p(z) = ℓp

1(z)d0
p−1(z) − ℓp−1

2 (z)ℓp
0(z)d0

p−2(z),

or, more explicitly,

d0
p(z) = [(1 − p + β) + (1 − j + γ)z]d0

p−1(z) − (p − 2 − β − γ)(p − 1)zd0
p−2(z), (2.15)

which follows from the fact that (a0
ij(z))pi,j=1 is a tridiagonal matrix.

The boundary conditions for this recurrence are: d0
1(z) = ℓ1

1(z) and d0
2(z) = ℓ1

1(z)ℓ2
1(z)−

ℓ1
2(z)ℓ2

0(z).

It can be inductively proved that the solution of (2.15) is given by

d0
p(z) =

Γ(β + 1)

Γ(−p)Γ(−γ)

p∑

t=0

Γ(−p + t)Γ(−γ + t)

Γ(β − p + 1 + t)

zt

t!
. (2.16)

Finally, noticing that the sum over t can be freely taken to ∞, we can write

d0
s−n(z) =

Γ(β + 1)

Γ(β − s + n + 1)
2F1

[
−s + n,−γ

β − s + n + 1

∣∣∣∣∣ z
]

,

and then,

Cn = Bn 2F1

[
−s + n,−j3 + m3

j2 − m2 − s + n + 1

∣∣∣∣∣ z
]

, (2.17)

where

Bn ≡ Γ(s − j2 − j3 + m2 + m3)Γ(j2 − m2 + 1)

Γ(s − n − j2 − j3 + m2 + m3)Γ(j2 − m2 − s + n + 1)
. (2.18)

On the other hand, since only partitions of the form (2, . . . , 2, 1, . . . , 1) appear we can use

sn,s−n(y1, . . . , ys) =

[
s∏

i=1

yi

]
× αs

n(y1, . . . , ys) ,

where

αs
n(y1, . . . , ys) =

1

n!(s − n)!

∑

σn

n∏

i=1

yσn(i)
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is an elementary symmetric polynomial and αs
0 = 1, to finally conclude that the four-point

function involving one highest-weight state is given by

Aw=0
4

[
j1, j2, j3, j4

j1,m2,m3,m4

]
(2.19)

= Γ(−s)|z|4j1j2ρ|1−z|4j2j3ρ
s∑

n,n=0

{
Bn 2F1

[
−s+n,−j3+m3

j2−m2−s+n+1

∣∣∣∣∣ z
]
×c.c.

}
×Jn,n(z, z),

where we have defined

Jn,n(z, z) =

∫
[dy]

s∏

i=1

|yi|−4j1ρ|z − yi|−4j2ρ−2|1 − yi|−4j3ρ−2
s∏

i<j

|yi − yj|4ρ

× αs
n(y1, . . . , ys)αs

n(y1, . . . , ys). (2.20)

Notice that, other than in the explicit overall factor, the z-dependence of (2.20) appears

in the hypergeometric function and both in the integrand and in the integration domain of

Jn,n(z, z). In the next section we analyze this dependence in detail.

2.3 Monodromy invariance and normalization

According to the analysis in [18], the integral Jn,n(z, z) is given by the monodromy invariant

combination of chiral and antichiral conformal blocks as

Jn,n(z, z) =

s∑

l=0

Xnn
l I l

n(z)I l
n(z) , (2.21)

where

I l
n(z) =

∫

∆
(1,∞)
s−l

s−l∏

i=1

dyi

∫

∆
(0,z)
l

l∏

i=1

dys−l+i

s∏

i=1

y−2j1ρ
i

s∏

i<j

(yi − yj)
2ρ

s−l∏

i=1

(yi−z)−2j2ρ−1(yi−1)−2j3ρ−1

×
l∏

i=1

(z − ys−l+i)
−2j2ρ−1(1 − ys−l+i)

−2j3ρ−1αs
n(y1, . . . , ys),

the integration domains being the simplex ∆
(1,∞)
s−l ≡ {(y1, . . . , ys−l) : 1 < ys−l < · · · < y1 <

+∞} and ∆
(0,z)
l ≡ {(ys−l+1, . . . , ys) : 0 < ys < · · · < ys−l+1 < z}.

The form (2.21) is diagonal in I l
n(z) since these functions have diagonal s-channel

monodromy (as we show below). The coefficients Xnn
l are determined from the requirement

that the physical four-point function must be monodromy invariant with respect to the

analytic continuation over z and z around z, z = 0 and around z, z = 1.

Alternatively to I l
n(z), one may consider the following “unordered” integrals:

J l
n(z) =

∫

(1,∞)s−l

s−l∏

i=1

dyi

∫

(0,z)l

l∏

i=1

dys−l+i

s∏

i=1

y−2j1ρ
i

s−l∏

i=1

(yi − z)−2j2ρ−1(yi − 1)−2j3ρ−1

×
l∏

i=1

(z − ys−l+i)
−2j2ρ−1(1 − ys−l+i)

−2j3ρ−1
s∏

i<j

(yi − yj)
2ραs

n(y1, . . . , ys), (2.22)
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which are related to I l
n(z) as

J l
n(z) = λl(ρ)I l

n(z),

with

λl(ρ) =
s−l∏

i=1

sin(iπρ)

sin(πρ)

l∏

i=1

sin(iπρ)

sin(πρ)
.

The symmetry of αs
n(y1, . . . , ys) under any permutation of its arguments renders the proof

of this statement exactly as in [18]. For given values of n, the functions (2.22) with

different values of l are mutually independent. They provide the integral representation

for the system of diagonal conformal blocks with respect to the s-channel.

In order to prove that the monodromy group around z = 0 acts diagonally on the basis

{J l
n(z)}, we perform the change of variables ys−l+q = zuq for q = 1, 2, . . . , l and get

J l
n(z) = z−2lj1ρ−2lj2ρ+ρl(l−1)

∫

(1,∞)s−l

s−l∏

i=1

dyi

∫

(0,1)l

l∏

i=1

dui

s−l∏

i=1

y−2j1ρ
i (yi − z)−2j2ρ−1

×(yi − 1)−2j3ρ−1
s−l∏

i<j

(yi − yj)
2ρ

l∏

q=1

u−2j1ρ
q (1 − uq)

−2j2ρ−1(1 − zuq)
−2j3ρ−1

×
l∏

q<p

(uq − up)
2ρ

s−l∏

i=1

l∏

q=1

(yi − zuq)
2ραs

n(y1, . . . , ys−l, zu1, . . . , zul) . (2.23)

It is easy to see that αs
n(y1, . . . , ys−l, zu1, . . . , zul) does not change the overall z-dependence

of (2.23) if n = 0, 1, 2, . . . , s− l, but an extra factor zl+n−s appears if n ≥ s− l+1. However

a rotation around z = 0 gives no additional phase factor since l+n−s is an integer number.

After extracting the z-dependence in (2.23), the integral is an analytic function, regular at

z = 0. Consequently, a monodromy transformation around z = 0 gives

J l
n(z) → exp[−2lπi(2j1 + 2j2 − l + 1)ρ] × J l

n(z) .

The following integrals provide an alternative basis for (2.20) [18]:

J̃ l
n(z) =

∫

(−∞,0)s−l

s−l∏

i=1

dyi

∫

(z,1)l

l∏

i=1

dys−l+i

s−l∏

i=1

(−yi)
−2j1ρ(z − yi)

−2j2ρ−1(1 − yi)
−2j3ρ−1

×
l∏

i=1

y−2j1ρ
s−l+i(ys−l+i − z)−2j2ρ−1(1 − ys−l+i)

−2j3ρ−1
s∏

i>j

(yi − yj)
2ραs

n(y1, . . . , ys).

In this case we may prove that this set is a canonical basis for the point z = 1. To this

aim, it is convenient to perform two changes of variables, first yi −→ 1 − yi and then
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ys−l+q −→ (1 − z)uq, for q = 1, 2, . . . , l. This gives:

J̃ l
n(z) = (1 − z)−2lj3ρ−2lj2ρ−l+l(l−1)ρ

n∑

n′=0

(−1)n
′

(
s − n′

n − n′

)∫

(1,∞)s−l

s−l∏

i=1

dyi

∫

(0,1)l

l∏

i=1

dui

×
s−l∏

i=1

(yi − 1)−2j1ρ(yi − (1 − z))−2j2ρ−1y−2j3ρ−1
i

s−l∏

i<j

(yi − yj)
2ρ

×
l∏

q=1

(1 − (1 − z)uq)
−2j1ρu−2j3ρ−1

q (1 − uq)
−2j2ρ−1

l∏

q<p

(uq − up)
2ρ

s−l∏

i=1

l∏

q=1

(yi − (1 − z)uq)
2ραs

n′(y1, . . . , ys−l, (1 − z)u1, . . . , (1 − z)ul),

where we have used the following identity

αs
n(1 − w1, . . . , 1 − ws) =

n∑

n′=0

(−1)n
′

(
s − n′

n − n′

)
αs

n′(w1, . . . , ws), (2.24)

which can be proved inductively.

In this case, if n = 0, 1, . . . , s−l, i.e., l+n ≤ s, then l+n′ ≤ s and there is no additional

overall (1−z)-dependence coming from the elementary symmetric polynomials, as we have

seen. If l + n > s, for l + n′ > s an extra factor (1 − z)l+n′−s should be considered. But,

again, a loop around z = 1 gives no non-trivial phase factor since l+n′− s ∈ N0. It follows

that a monodromy transformation around z = 1 is given by

J̃ l
n(z) → exp[−2lπi(2j2 + 2j3 − l + 1)ρ] × J̃ l

n(z),

and {J̃ l
n(z)} is, thus, a canonical basis for z = 1.

Having checked that {J l
n(z)} and {J̃ l

n(z)} are canonical basis for the points z = 0 and

z = 1, respectively, the computation of the factors Xnn
l follows as in [18]. Since they do

not depend on n, n we may write8

Xl≡Xnn
l =

1

s!

s−l∏

i=1

sin(iπρ)

sin(πρ)

l∏

i=1

sin(iπρ)

sin(πρ)

l−1∏

i=0

sin(π(1 − 2j1ρ + iρ)) sin(π(−2j2ρ + iρ))

sin(π(1 − 2j1ρ − 2j2ρ + (l − 1 + i)ρ))
(2.25)

×
s−l−1∏

i=0

sin(π(−2j3ρ + iρ)) sin(π(1 + 2j1ρ + 2j3ρ + 2j2ρ − 2ρ(s − 1) + iρ))

sin(π(1 + 2j1ρ + 2j2ρ − 2ρ(s − 1) + (s − l − 1 + i)ρ))
.

Following a related computation in [19], let us write

z2j1j2ρ(1 − z)2j2j3ρ
2F1

[
−s + n,−j3 + m3

j2 − m2 − s + n + 1

∣∣∣∣∣ z
]

J l
n(z) = λl(ρ)N l

nf l
n(z)zγl

n , (2.26)

8Recall that these coefficients are defined up to an overall l-independent factor to be determined from

the two-point function [18]. Here they are already normalized.
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where f l
n(z) are regular functions of z with f l

n(0) = 1, so that the four-point function can

be rewritten as

Aw=0
4

[
j1, j2, j3, j4

j1,m2,m3,m4

]
= Γ(−s)

s∑

l=0

s∑

n,n=0

Xl

{
zγl

nBnN l
nf l

n(z) × c.c.
}

. (2.27)

The expressions for N l
n and γl

n differ, depending on whether (a) : l + n ≤ s, or

(b) : l + n > s.

Case (a). In this case, we have

γl
n = 2j1j2ρ − 2lj1ρ − 2lj2ρ + ρl(l − 1) , (2.28)

and since it does not depend on n, we will denote it simply by γl.

The normalization constant N l
n is obtained omitting the overall z-dependence in (2.23)

and afterwards taking the limit z → 0, namely,

N l
n =

1

l!(s − l)!

∫

(0,1)l

l∏

i=1

dui

l∏

q=1

u−2j1ρ
q (1 − uq)

−2j2ρ−1
l∏

q<p

|uq − up|2ρ (2.29)

×
∫

(1,∞)s−l

s−l∏

i=1

dyi

s−l∏

i=1

y−2j1ρ−2j2ρ−1+2lρ
i (yi − 1)−2j3ρ−1

s−l∏

i<j

|yi − yj|2ραs−l
n (y1, . . . , ys−l),

where we have used the identity

αs
n(y1, . . . , ys−l, 0, . . . , 0) = αs−l

n (y1, . . . , ys−l). (2.30)

Let us denote the Selberg integrals in the first line9 as Sl(−2j1ρ + 1,−2j2ρ, ρ). The

remaining integral can be computed using Aomoto’s formula. Indeed, changing vari-

ables yi → 1/yi and using the conservation laws (2.5)–(2.6), we can rewrite the last line

in (2.29) as

As−l−n
s−l (−2j4ρ,−2j3ρ, ρ) =

∫

(0,1)s−l

s−l∏

i=1

dyi

s−l∏

i=1

y−2j4ρ−1
i (1 − yi)

−2j3ρ−1

×
s−l∏

i<j

|yi − yj |2ραs−l
s−l−n(y1, . . . , ys−l),

where we have used the identity

αs−l
n

(
1

y1
, . . . ,

1

ys−l

)
=

[
s−l∏

i=1

y−1
i

]
αs−l

s−l−n(y1, . . . , ys−l).

Therefore, the normalization constant may be written as

N l
n =

1

l!(s − l)!
Sl(−2j1ρ + 1,−2j2ρ, ρ)As−l−n

s−l (−2j4ρ,−2j3ρ, ρ). (2.31)

9Recall that we are using the notation introduced in [1].
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Case (b). When l + n > s we have

γl
n = γl + l + n − s, (2.32)

and

N l
n =

1

l!(s − l)!

∫

(0,1)l

l∏

i=1

dui

l∏

q=1

u−2j1ρ
q (1 − uq)

−2j2ρ−1
l∏

q<p

|uq − up|2ραl
n+l−s(u1, . . . , ul)

×
∫

(0,1)s−l

s−l∏

i=1

dyi

s−l∏

i=1

y−2j4ρ−1
i (1 − yi)

−2j3ρ−1
s−l∏

i<j

|yi − yj|2ρ,

where we have used

lim
z→0

zs−l−nαs
n(y1, . . . , ys−l, zu1, . . . , zul) =

[
s−l∏

i=1

yi

]
αl

n+l−s(u1, . . . , ul), (2.33)

and therefore we get

N l
n =

1

l!(s − l)!
Al+n−s

l (−2j1ρ + 1,−2j2ρ, ρ)Ss−l(−2j4ρ,−2j3ρ, ρ). (2.34)

Notice that the values of γl
n given by (2.32) are always greater than those in (2.28)

and thus they do not contribute to the lowest order in the factorization limit.

Using the identities (see [18] and [1]):

Sl(a, b, ρ) =
1

l!

l∏

i=1

sin(iπρ)

sin(πρ)

l−1∏

i=0

sin(π(a − 1 + iρ)) sin(π(b − 1 + iρ))

sin(π(a + b − 2 + (l − 1 + i)ρ))
Sl(a, b, ρ)2, (2.35)

An,n
l (a, b, ρ) =

1

l!

l∏

i=1

sin(iπρ)

sin(πρ)

l−1∏

i=0

sin(π(a − 1 + iρ)) sin(π(b − 1 + iρ))

sin(π(a + b − 2 + (l − 1 + i)ρ))
An

l (a, b, ρ)An
l (a, b, ρ),

and replacing (2.18), (2.25), (2.28), (2.31), (2.32) and (2.34) into (2.27), it follows that the

four-point amplitude may be rewritten in the following useful form:

Aw=0
4

[
j1, j2, j3, j4

j1,m2,m3,m4

]

= Γ(−s)

s∑

l=0

|z|2γl

(
s

l

)[ s−l∑

n,n=0

|Bs−l−n|2Sl(−2j1ρ + 1,−2j2ρ, ρ) (2.36)

×An,n
s−l(−2j4ρ,−2j3ρ, ρ)|f l

s−l−n(z)|2

+

l∑

n,n=1

znz̄n̄|Bs−l+n|2Ss−l(−2j4ρ,−2j3ρ, ρ)An,n
l (−2j1ρ + 1,−2j2ρ, ρ)|f l

s−l+n(z)|2
]
.

Recall that this expression holds for integer numbers of screening charges and it involves

one highest-weight operator. It is possible to relax the highest-weight restriction using the

Campbell-Backer-Hausdorff identity and proceeding as was done for the easier case of the
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three-point functions in [1, 28]. We shall not perform this tedious calculation here but we

show later that the leading terms in the z, z → 0 limit of (2.37) can be identified with

products of three-point functions from where it is straightforward to see that relaxing the

highest-weight condition turns the Selberg integrals into combinations of Aomoto integrals.

In order to have a closed form for the conformal blocks10 f l
n(z) one must solve the

multiple integrals in (2.22) and this is a difficult task.11 Even in the simpler cases of

Liouville theory or the H+
3 -WZNW model no explicit formula for the conformal blocks is

known. However, albeit the existence of a closed expression is unlikely, we shall be able to

examine the leading terms in the factorization limit and perform the analytic continuation

of (2.37) to generic values of the spins.

3 The factorization limit

In this section we study the leading terms in the factorization limit of the four-point

function, i.e. we retain only the leading terms in the z, z → 0 limit of (2.37) and examine

the following expression:

A
w=0
4

[
j1, j2, j3, j4

j1,m2,m3,m4

]
(3.1)

≡ Γ(−s)

s∑

l=0

s−l∑

n,n=0

|z|2γl

(
s

l

)
|Bs−l−n|2Sl(−2j1ρ + 1,−2j2ρ, ρ)An,n

s−l(−2j4ρ,−2j3ρ, ρ).

3.1 Identification of the intermediate channels

The leading powers of z in the factorization of the amplitude of four unflowed states are

expected to be of the form ∆̂j,m,w − ∆j1 − ∆j2. In general there are various choices

of quantum numbers for which this combination equals γl, and then the intermediate

channels cannot be unambiguously determined from this equality. No ambiguities arise

in the semiclassical regime where only unflowed operators are expected to appear, so that

equating γl = ∆j−∆j1−∆j2 one can read the possible values of the spin of the intermediate

states. They are given by j ≡ j0 = −1− j1− j2 + l and j = −1− j0, in agreement with [19].

Consistently with this identification, let us now show that the sums over n and n

in (3.2) can be rewritten as products of two w = 0 three-point functions divided by the

two-point function of the unflowed intermediate state.

10Although they are closely related, the functions f l
n(z) should be distinguished from fn(x) introduced

in (1.2).
11Actually, (2.22) is obtained when the amplitude involves one highest-weight state. The most general

expression for the conformal blocks when four generic states are considered can be reconstructed replacing

αs
n(y1, . . . , ys) by snr(y1, . . . , ys) and the coefficients Cnr given in (2.17) by (A.5). In the limit z, z → 0,

the integrals will reduce to those computed in [34], but the manipulations performed in this section with

the elementary symmetric polynomials cannot be easily generalized when arbitrary Schur polynomials are

involved.
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Recall the expression for the three-point functions given by eq. (3.42) in [1]. Changing

labels, this equation may be rewritten as

Aw=0
3

[
j4, j3,−1 − j

m4,m3,m

]
= Γ(−s + l)

[
Γ(1 + j4 − m4)

Γ(−s + l + 1 + j4 + j3 − m4 − m3)
× c.c.

]
(3.2)

×
s−l∑

n,n=0

(−1)n+n

[
Γ(−s + l + 1 + j4 + j3 − m4 − m3 + n)

Γ(1 − s + l + j4 − m4 + n)
× c.c.

]
An,n

s−l(−2j4ρ,−2j3ρ, ρ),

where j3 + j4 − j = s− l, m = −m3 −m4 and An,n
l (−2j1ρ,−2j2ρ, ρ) was defined in (2.36).

The insertion points of the operators in the three-point functions are taken at (0, 1,+∞)

and, as before, we omit the obvious m-dependence from the arguments for short.

Using the conservation laws for the original four-point function, i.e. j2 = s − 1 − j1 −
j3 − j4, m2 = −j1 − m3 − m4, and recalling that

Bs−l−n =
Γ(1 + j4 − m4)

Γ(l + n − s + 1 + j4 − m4)

Γ(s − j3 − j4 + m3 + m4)

Γ(s − j3 − j4 + m3 + m4 − l − n)
,

the three-point function (3.3) may be rewritten as

Aw=0
3

[
j4, j3,−1 − j

m4,m3,m

]
= Γ(−s + l)

Γ(1 − s + j3 + j4 − m3 − m4)

Γ(−s + l + 1 + j4 + j3 − m4 − m3)

× Γ(1 − s + j3 + j4 − m3 − m4)

Γ(−s + l + 1 + j4 + j3 − m4 − m3)
s−l∑

n,n=0

|Bs−l−n|2An,n
s−l(−2j4ρ,−2j3ρ, ρ).

Therefore, it follows from (3.2) that

A
w=0
4

[
j1, j2, j3, j4

j1,m2,m3,m4

]
= Γ(−s)

s∑

l=0

|z|2γl

(
s

l

)
Sl(−2j1ρ + 1,−2j2ρ, ρ) (3.3)

× Γ(−j2 + m2 + l)Γ(−j2 + m2 + l)

Γ(−s + l)Γ(−j2 + m2)Γ(−j2 + m2)
Aw=0

3

[
j4, j3,−1 − j

m4,m3,m

]
.

Using the following identity proved in [28]:

Aw=0
3

[
j1, j2, j

j1,m2,−m

]
= Γ(−l)

Γ(−j2 + m2 + l)Γ(−j2 + m2 + l)

Γ(−j2 + m2)Γ(−j2 + m2)
Sl(−2j1ρ + 1,−2j2ρ, ρ),

where j1 + j2 + j + 1 = l, (3.3) may be recast as

A
w=0
4

[
j1, j2, j3, j4

j1,m2,m3,m4

]
=

1

Γ(0)

s∑

l=0

|z|2γlAw=0
3

[
j1, j2, j

j1,m2,−m

]
Aw=0

3

[
j4, j3,−1−j

m4,m3,m

]

=

s∑

l=0

|z|2γlAw=0
3

[
j1, j2, j

j1,m2,−m

]
Aw=0

3

[
j4, j3,−1−j

m4,m3,m

]
Aw=0

2

[
j,−1−j

−m,m

]−1

,
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where we have used Γ(−l)l! = (−1)lΓ(0) in the first line and the factor Γ(0) has been

interpreted as the δ2(0) from a two-point function in the second line.

At this point we can straightforwardly relax the highest-weight condition of the state

at z1, z1 = 0 using the Backer-Campbell-Hausdorff formula as in [28] to finally get:

A
w=0
4

[
j1, j2, j3, j4

m1,m2,m3,m4

]
(3.4)

=

s∑

l=0

|z|2γlAw=0
3

[
j1, j2, j

m1,m2,−m

]
Aw=0

3

[
j3, j4,−1 − j

m3,m4,m

]
Aw=0

2

[
j,−1 − j

−m,m

]−1

,

where j = j0 ≡ −1− j1− j2 + l (alternatively, j = −1− j0) and m = m1 +m2 = −m3−m4.

Changing the index l → (s−l) in (3.4) we get another parametrization of the four-point

function that will be important when discussing its analytic continuation below, namely

A
w=0
4

[
j1, j2, j3, j4

m1,m2,m3,m4

]
(3.5)

=
s∑

l=0

|z|2γ′

l Aw=0
3

[
j1, j2,−1 − j′

m1,m2,−m

]
Aw=0

3

[
j4, j3, j

′

m4,m3,m

]
Aw=0

2

[
−1 − j′, j′

−m,m

]−1

,

where γ′
l equals γl with the replacement j → j′ = −1 − j3 − j4 + l.

Eq. (3.4) expresses the content of the factorization limit of the four-point functions

obtained in the Coulomb gas approach in the semiclassical limit. However, this expression

was deduced without making any assumption on the values of k, except for the identification

of the intermediate channels with unflowed operators. It is surprising that all the terms

in (3.2) can be identified as contributions of w = 0 intermediate states because it was shown

in [17] that the OPE of unflowed states (when defined as in [3]) contains contributions from

operators outside the physical spectrum of the AdS3-WZNW model and it was argued

in [30] that the spectral flow symmetry of the model requires to additionally consider

w-violating structure constants. In section 3.3 we elaborate on these issues.

3.2 Analytic continuation

In order to perform the analytic continuation of A
w=0
4 for generic external states, notice

that the integer nature of the number of screening charges is encoded both in the upper

limit of the sum in (3.4) and in the fact that this expression is actually a discrete sum:

recall that the first three-point function in this equation involves l screening operators

while the second one involves the remaining s − l ones. In order to obtain an expression

for generic unflowed external states we will identify the terms in the sum over l with the

residues of a meromorphic function extending the summands sequence. This will allow us

to rewrite the four-point correlator as a complex integral where the integer nature of the

number of screening operators will be strictly restricted to the choice of the integration

contour. For a suitable set of the kinematical parameters this contour can be fixed and

generic amplitudes can be obtained. This strategy to perform the analytic continuation

of (3.4) to generic spin values of the external states in the semiclassical limit is inspired
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by [14]. In the next subsection we discuss the validity of the result for arbitrary values of

the affine level k.

In order to trade the sum in (3.4) for an integral, let us first notice that it can be

freely extended to ∞ (see (3.2)). Furthermore, given that the two-point function in the

denominator of (3.4) diverges as Γ(0), we can use the following identity, which is valid for

any sequence K(l):

1

Γ(0)

∞∑

l=0

K(l) =
1

2πi

∮

C

K(x) dx, (3.6)

where K(x) is a meromorphic continuation of K(l) having simple poles at x = 0, 1, 2, . . . ,∞,

with K(x) behaving as Γ(−x) near them.12 The contour C is understood to enclose only

these poles and neither of the other poles that K(x) could have.

Our first task is to find a proper analytic continuation for the sequence of summands

in (3.4). To this aim, recall that it was proved in [1] that the Coulomb gas representation

of the three-point functions Aw=0
3

[
j1, j2, j3

m1,m2,m3

]
admits such analytic continuation in the

number of screening operators leading to the following exact expression [2, 17]:

Aw=0
3

[
j1, j2, j3

m1,m2,m3

]
= δ2 (m1 + m2 + m3)D(−1 − j1,−1 − j2,−1 − j3)W

[
j1, j2, j3

m1,m2,m3

]
,

where we have introduced the δ2 (m1 + m2 + m3) in order to reinforce the conservation law

implicit in the free field computation, D(j1, j2, j3) is the structure constant given by

D(j1, j2, j3) =
G(1 + j1 + j2 + j3)G(j1 + j2 − j3)G(j2 + j3 − j1)G(j3 + j1 − j2)

ν−j1−j2−j3−1G0G(1 + 2j1)G(1 + 2j2)G(1 + 2j3)
, (3.8)

with

G(j) = (k − 2)
j(1−j−k)
2(k−2) Γ2(−j|1, k − 2) Γ2(k − 1 + j|1, k − 2),

Γ2(x|1, w) being the Barnes double Gamma function, G0 = −2π2γ (1 − ρ)G(−1) and

W

[
j1, j2, j3

m1,m2,m3

]

=

∫
d2x1 d2x2 xj1+m1

1 xj1+m1
1 xj2+m2

2 xj2+m2
2 |1−x1|−2j13−2|1−x2|−2j23−2|x1−x2|−2j12−2.

12Eq. (3.6) is a suitable form of the classical Nörlund-Rice theorem for infinite sums, which states that

∞
X

l=0

(−1)l

l!
H(l) =

1

2πi

I

C

Γ(−x)H(x) dx , (3.7)

for any meromorphic continuation H(x) of H(l) having no poles in the positive integer numbers. Eq. (3.6)

is obtained from (3.7) after using the formal expression l! = Γ(1 + l) = (−1)lΓ(0)/Γ(−l).
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This function was computed in [35] and it was shown in [17] that it reduces to

W1

[
j1, j2, j3

m1,m2,m3

]
=(−1)m3−m3+q1π2 γ(−1−j1−j2−j3)γ(1+2j1)

γ(1+j12)γ(1+j13)

Γ(1+j2−m2)

Γ(−j2 + m2)

Γ(1+j3−m3)

Γ(−j3 + m3)

×
{

Γ(1 + j3 + m3)

Γ(1 + j3 + m3 − q1)
3F2

[
−q1, −j12, 1 + j23

−2j1, 1 + j3 + m3 − q1

∣∣∣∣∣ 1
]
× c.c.

}
, (3.9)

for m1 = j1 − q1 and m1 = j1 − q1 with q1, q1 = 0, 1, 2, . . . .

In order to analyze the analytic structure of the summand in (3.4), it is useful to

parametrize both three-point functions in a similar way by using the following identity:

Aw=0
3

[
j3, j4,−1 − j

m3,m4,m

]
Aw=0

2

[
j,−1 − j

−m,m

]−1

= Aw=0
3

[
j3, j4, j

m3,m4,m

]
Aw=0

2

[
j, j

−m,m

]−1

,

which follows from (2.6)-(2.7) and (3.5) in [17], so that, up to an irrelevant factor, we can

rewrite (3.4) as the following integral:

A
w=0
4

[
j1, j2, j3, j4

m1,m2,m3,m4

]
(3.10)

=

∮

C

|z|2(∆j−∆j1
−∆j2

)Aw=0
3

[
j1, j2, j

m1,m2,−m

]
Aw=0

3

[
j3, j4, j

m3,m4,m

]
Aw=0

2

[
j, j

−m,m

]−1

dj,

where C encloses the poles at j = −1 − j1 − j2 + Z≥0.

Some care must be taken when applying (3.6) since it is valid for a meromorphic

extension behaving as a gamma function near the integer poles. The three-point function

Aw=0
3

[
j1, j2, j

m1,m2,−m

]
exhibits this behaviour near the poles at j = −1 − j1 − j2 + Z≥0 in

the factor γ(−1 − j1 − j2 − j) in (3.9). The structure constants have no such poles.

The fact that s is an integer number plays no role in (3.10) and, in that sense, this

expression can be thought to be valid even for j1 + j2 + j3 + j4 + 1 /∈ N0. Recall that the

three-point functions involve fields with generic kinematical configurations. However, it is

important to notice that although the spins of the external states are no longer restricted,

the integer nature of the number of screening operators remains encoded in the prescription

for the choice of the integration contour. Indeed, it is necessary to specify C in order

to have a well-defined analytic continuation. This does not seem possible for arbitrary

configurations [14], but in the semiclassical limit, one can freely set C = P = −1/2 + iR

restricting the quantum numbers of the external states as follows:

{
|Re(j1 + j2 + 1)| < 1

2 , |Re(j3 + j4 + 1)| < 1
2 ,

|Re(j1 − j2)| < 1
2 , |Re(j3 − j4)| < 1

2 ,
(3.11)

{
max{m1 + m2,m1 + m2} > −1

2 ,

min{m1 + m2,m1 + m2} < 1
2 .

(3.12)
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Indeed, taking the k → ∞ limit, the poles of the first three-point function in (3.10)

are located at
{

j = −1 − j1 − j2 + Z≥0,

j = j2 − j1 + Z≥0,
(3.13)

{
j = j1 + j2 − Z≥0,

j = j1 − j2 − 1 − Z≥0,
(3.14)

j = −max{m1 + m2,m1 + m2} − Z>0 ,

while those coming from the second three-point function are placed at
{

j = −1 − j3 − j4 + Z≥0,

j = j4 − j3 + Z≥0,
(3.15)

{
j = j3 + j4 − Z≥0,

j = j3 − j4 − 1 − Z≥0,
(3.16)

j = min{m1 + m2,m1 + m2} − Z>0 .

Under (3.12) the poles depending on m1,m2 and m1,m2 lie in the left half complex

j−plane, and this is also the case for the poles at (3.14) and (3.16). It follows that closing

the contour at infinity to the right, the only poles encircled are at (3.13) and (3.15). By

virtue of the parametrization (3.5) it is easy to see that the contributions from the residues

in both families of poles are identical. Finally, let us notice that both series of poles in (3.13)

are related by the reflection j2 ↔ (−1− j2). It is proved in appendix A.2 that the residues

at the second series of poles in (3.13) vanish if the state at z2, z2 = 1 lies in a discrete series.

Summarizing, we have found, up to irrelevant factors, that the leading term in the

factorization of the four-point function is given, in the semiclassical limit, by

A
w=0
4

[
j1, j2, j3, j4

m1,m2,m3,m4

]
= (3.17)

∫

P

dj |z|2(∆j−∆j1
−∆j2

)Aw=0
3

[
j1, j2, j

m1,m2,−m

]
Aw=0

3

[
j3, j4, j

m3,m4,m

]
Aw=0

2

[
j, j

−m,m

]−1

.

This expression makes no reference at all to the integer nature of the number of screening

operators and it is valid for external states restricted as in (3.11), (3.12). For other values

of the kinematical parameters it must be defined by analytic continuation, as discussed

in [2, 3].

Eq. (3.18) agrees with the one obtained by transforming the x-basis integral for-

mula (1.2) for the four-point function to the m-basis.13 In the H+
3 -WZNW model, (1.2)

was obtained in [14] in the mini-superspace limit, which describes a semiclassical region

of the full theory, and it was postulated to be valid for generic values of k from the OPE

of normalizable states and the factorization ansatz in [2, 3]. Here, we have deduced it

13See [30] for this computation and [36] for an alternative representation of the integral transform of (1.2)

to the m-basis.
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also in the large-k limit using the Coulomb gas method. If w-conserving amplitudes in

the AdS3-WZNW models are related by analytic continuation to correlators of the H+
3 -

WZNW model, as it is widely believed, a similar postulate would allow to extend the

validity of (3.18) beyond the semiclassical regime. Such conjecture however is more sub-

tle in the Lorentzian model than in its Euclidean counterpart due to the spectral flow

representations. In the following subsection we discuss this issue.

3.3 Factorization into spectral flow violating three-point functions

The OPE of normalizable states determining the four-point functions (1.2) in the H+
3 -

WZNW model would give an incorrect zero answer if used to compute w-violating three-

point functions in the AdS3-WZNW model. Actually, consistency with the spectral flow

selection rules leads to the following OPE for spectral flow images of primary fields in the

AdS3-WZNW model [30]:

Φj1,w1
m1,m1

(z1, z1)Φ
j2,w2
m2,m2

(z2, z2) =

∑

w=0,±1

∫

P

Aw
3

[
j1 , j2, −1 − j3

m1,m2,−m3

]
z−∆̂12
12 z−∆̂12

12 Φj3,w3
m3,m3

(z2, z2) dj3 + · · · , (3.18)

where w = w3 − w1 − w2, z12 = z1 − z2, ∆̂12 = ∆̂j1,m1,w1 + ∆̂j2,m2,w2 − ∆̂j3,m3,w3 and

Aw=±1
3

[
j1, j2, j3

m1,m2,m3

]
=

δ2 (m1 + m2 + m3 ∓ k/2)

γ(j1 + j2 + j3 + 3 − k/2)
D̃(−1 − j1,−1 − j2,−1 − j3)W̃

[
j1, j2, j3

∓m1,∓m2,∓m3

]

with

D̃(j1, j2, j3) ∼ B(j1)D

(
−k

2
− j1, j2, j3

)
,

up to k-dependent, j-independent factors and

W̃

[
j1 , j2 , j3

m1,m2,m3

]
=

Γ(1 + j1 + m1)

Γ(−j1 − m1)

Γ(1 + j2 + m2)

Γ(−j2 − m2)

Γ(1 + j3 + m3)

Γ(−j3 − m3)
.

Although it is necessary to further truncate this OPE in order to avoid inconsistencies

with the spectral flow symmetry, the physical mechanism determining the decoupling not

being yet completely understood, several successful checks have been performed on the

fusion rules obtained from (3.18). In particular, they reproduce the classical tensor product

of representations of SL(2, R) in the k → ∞ limit and moreover, for generic k > 2 they

establish the closure of the operator algebra on the Hilbert space of the AdS3-WZNW

model determined in [16].

The factorization ansatz based on this OPE would give an expression for the w-

conserving four-point correlation functions involving both spectral flowed and unflowed

intermediate states. This conclusion also follows from the results in [4], where w = 1 long
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strings were found in the s-channel factorization of the four-point functions of w = 0 short

strings starting from (1.2), rewriting the integrand and moving the integration contour.

However, these observations pose an apparent contradiction with (3.2).

To understand this issue, recall that we have performed the Coulomb gas computation

of the expectation value of four unflowed vertices without any insertion of spectral flow

operators, namely, we have taken N+ = N− = 0 in (2.7). Therefore we should not expect

to be able to recognize w-violating three-point functions in the factorization limit since

w 6= 0 amplitudes require insertions of vertices η±. However, the full final result for the

w-conserving four-point function must be the same, independently of the (even) number of

these insertions because they simply act as picture changing operators. This suggests either

that there are no w-violating channels or that both channels give equivalent expansions.

These two possibilities also follow if correlation functions in the AdS3-WZNW model are

to be obtained by analytic continuation from those in the H+
3 -WZNW model, because the

spectral flow fields do not belong to the spectrum of the Euclidean theory. The results

in [4, 30] force the conclusion that both channels give equivalent contributions. However,

we should not expect to be able to verify this equivalence in general just by looking at

the leading terms in the factorization limit. Rather, since the spectral flow operation

maps primaries into non-primaries, a general proof of this statement would require making

explicit the higher order terms in (3.18) and possibly some contour manipulations.

Despite these general arguments, in the remaining of this section we use the Coulomb

gas approach to illustrate in a particular example the assertion that products of w-

preserving and violating three-point functions give the same contributions to the w-

conserving four-point functions.

Let us start by evaluating the following amplitude

Aw=0
4




j1, j2, j3, j4

j1,m2,−j3,m4

w1, w2, w3, w4


 (3.19)

= Γ(−s)
〈
V j1,w1

m1=m1=j1
(0)V j2,w2

m2,m2
(z)V j3,w3

m3=m3=−j3
(1)V j4,w4

m4,m4
(+∞)η−(ζ−)η+(ζ+)Qs

〉
.

The insertion of the spectral flow operators will be explained later.

After performing the corresponding field contractions we get

Aw=0
4




j1, j2, j3, j4

j1,m2,−j3,m4

w1, w2, w3, w4


 =

Γ(−s)

π2Γ(0)2

[
(ζ− − z)−(j2−m2)(1 − ζ−)−2j3(ζ+ − z)−(j2+m2)

×(ζ− − ζ+)−(k−1)(ζ+)−2j1z2j1j2ρ− k
2
w1w2−w1m2−w2j1

×(1 − z)2j2j3ρ− k
2
w2w3+w2j3−w3m2 × c.c

]

×
∫ s∏

i=1

d2yi|yi|−4j1ρ|z − yi|−4j2ρ|1 − yi|−4j3ρ|ζ+ − yi|4

×
s∏

i<j

|yi − yj|4ρ

[
1

P ∂1 . . . ∂s(ΛP) × c.c

]
,
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where we have defined

P =

s∏

i=1

(z − yi)
−(j2−m2)(1 − yi)

−2j3(ζ+ − yi)
−(k−2)

∏

i<j

(yi − yj) and Λ =

s∏

i=1

ζ− − yi

ζ+ − yi
.

It was shown in [1] that this expression reproduces the one obtained using the prescription

introduced in [32] to compute correlators involving spectral flowed operators. Therefore, the

dependence on ζ± and ζ
±

cancels and we can freely take14 ζ− = ζ
−

= 0 and ζ+ = ζ
+

= 1,

obtaining

Aw=0
4




j1, j2, j3, j4

j1,m2,−j3,m4

w1, w2, w3, w4




=
Γ(−s)

π2Γ(0)2

[
z2j1j2ρ− k

2
w1w2−w1m2−w2j1−j2+m2(1 − z)2j2j3ρ− k

2
w2w3+w2j3−w3m2−j2−m2 × c.c

]

×
∫ s∏

i=1

d2yi|yi|−4j1ρ+2|z − yi|−4j2ρ|1 − yi|−4j3ρ+2
s∏

i<j

|yi − yj|4ρ

[
1

P ′
∂1 . . . ∂sP ′ × c.c

]

where

P ′ =

s∏

i=1

yi(z − yi)
−(j2−m2)(1 − yi)

−2j3−k+1
∏

i<j

(yi − yj).

It is easy to check that this expression equals, up to the factor (πΓ(0))−2, the Coulomb inte-

gral realization of the amplitude Aw=0
4



−1 − j̃1, j2,−1 − j̃3, j4

− j̃1, m2, j̃3, m4

w1 − 1, w2, w3 + 1, w4


 , where we have introduced

j̃1 = −k

2
− j1, j̃3 = −k

2
− j3 .

Notice that the conservation laws for this correlation function, when no spectral flow

operators are inserted, reproduce those of (3.20). Indeed, the spectral flow operators were

inserted in (3.20) to achieve this equality.

Using the reflection identity [3, 33, 37] and cj̃

±j̃,±j̃
= πΓ(0), we can write

V −1−j̃,w

±j̃,±j̃
= B(j̃) cj̃

±j̃,±j̃
V j̃,w

±j̃,±j̃
= πΓ(0)B(j̃)V j̃,w

±j̃,±j̃
,

and then it is straightforward to show that

Aw=0
4




j1, j2, j3, j4

j1,m2,−j3,m4

w1, w2, w3, w4


 = B(j̃1)B(j̃3)A

w=0
4




j̃1, j2, j̃3, j4

−j̃1, m2, j̃3, m4

w1 − 1, w2, w3 + 1, w4


 (3.20)

= zm2+ k
2
w2zm2+ k

2
w2(1 − z)−m2−

k
2
w2(1 − z)−m2−

k
2
w2B(j̃1)B(j̃3)A

w=0
4




j̃1, j2, j̃3, j4

−j̃1,m2, j̃3,m4

w1, w2, w3, w4


 .

14Notice that this can be done only because there is a highest-weight state inserted at z1, z1 = 0 and a

lowest-weight state at z3, z3 = 1.
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This identity was assumed in [30] as the starting point of the proof that products of w-

conserving or w-violating three-point functions give the same contribution when factorizing

these four-point functions. To be more explicit, let us show this statement in the particular

case wi = 0, i = 1, . . . , 4.

On the one hand, we have already found that (see eq. (3.4) and the discussion below)

A
w=0
4

[
j1, j2, j3, j4

j1,m2,−j3,m4

]
(3.21)

=

s∑

l=0

|z|2(∆j−∆j1
−∆j2

)Aw=0
3

[
j1, j2, j

j1,m2,−m

]
Aw=0

3

[
j3, j4, j

−j3,m4,m

]
Aw=0

2

[
j, j

−m,m

]−1

where j = −1− j1 − j2 + l, and we showed that this expression can be analytically contin-

ued as

A
w=0
4

[
j1, j2, j3, j4

j1,m2,−j3,m4

]
(3.22)

=

∫

P

dj |z|2(∆j−∆j1
−∆j2

)Aw=0
3

[
j1, j2, j

j1,m2,−m

]
Aw=0

3

[
j3, j4, j

−j3, j4,m

]
Aw=0

2

[
j, j

−m,m

]−1

for configurations of the external states lying in (3.11)–(3.12).

On the other hand, from (3.21) we obtain

A
w=0
4

[
j1, j2, j3, j4

j1,m2,−j3,m4

]
= B(j̃1)B(j̃3)z

m2zm2

s∑

l=0

|z|2(∆j̃
−∆

j̃1
−∆j2

)
(3.23)

×Aw=0
3

[
j̃1, j2, j̃

−j̃1,m2,−m̃

]
Aw=0

3

[
j̃3, j4, j̃

j̃3,m4, m̃

]
Aw=0

2

[
j̃, j̃

−m̃, m̃

]−1

,

where j̃ = −1 − j̃1 − j2 + l.

Following the procedure leading to (3.21) in the case of the three-point functions, one

can show from the Coulomb integral expressions that the factors B(j̃1) and B(j̃3) can be

reabsorbed as

B(j̃1)A
w=0
3

[
j̃1, j2, j̃

−j̃1,m2,−m̃

]
= Aw=1

3

[
j1, j2, j̃

j1,m2,−m̃

]
,

and a similar expression for the second three-point function in (3.24). Since the coordinate

independent coefficient of the two-point functions of states in different spectral flow sectors

does not change, we finally get the following expression:

A
w=0
4

[
j1, j2, j3, j4

j1,m2,−j3,m4

]
(3.24)

=

s∑

l=0

|z|2(∆̂j̃,m̃,w=−1−∆j1
−∆j2

)Aw=1
3

[
j1, j2, j̃

j1,m2,−m̃

]
Aw=−1

3

[
j3, j4, j̃

−j3,m4, m̃

]
Aw=0

2

[
j̃, j̃

−m̃, m̃

]−1

,
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the factor zm2 zm2 in (3.24) being needed in order to reproduce the correct conformal weight

of the intermediate states.

The equivalence between expansions of the same four-point function in terms of ei-

ther w-conserving or w-violating three-point functions can be seen comparing eqs. (3.22)

and (3.25).

We mentioned above that the spectral flow makes the validity of (3.18) beyond the

semiclassical limit in the AdS3 model more subtle than in the H+
3 model. But the possibility

of encoding the unflowed contributions in terms of spectral flowed intermediate states

supports the conjecture that (3.18) also holds for finite values of the affine level.15 If this

is the case, starting from (3.23) instead of (3.22) would lead us to the following analytic

continuation of (3.25):16

A
w=0
4

[
j1, j2, j3, j4

j1,m2,−j3,m4

]

=

∫

P

dj |z|2(∆̂j̃,m̃,w̃=−1−∆j1
−∆j2

)Aw=1
3

[
j1, j2, j̃

j1,m2,−m̃

]
Aw=−1

3

[
j3, j4, j̃

−j3,m4, m̃

]
Aw=0

2

[
j̃, j̃

−m̃, m̃

]−1

.

Indeed, the equivalence of this last expression and (3.23) was obtained in [30] and it was

the starting point for an explicit verification that the truncation imposed on the operator

algebra by the spectral flow symmetry is realized at the level of physical amplitudes.

4 Summary and discussion

We have computed w−conserving four-point correlation functions on the sphere in the

AdS3-WZNW model using the Coulomb gas approach. The requirement of integer num-

bers of screening operators, a well known shortcoming of the formalism for models with

continuous sets of fields, demands considering operators with quantized values of the sum

of their spins, implying that only expectation values of certain states in discrete repre-

sentations can be evaluated without performing any analytic continuation. The result in

this case was obtained as the monodromy invariant sum of products of holomorphic and

antiholomorphic conformal blocks, namely, equation (2.37).

The full integral expression for the conformal blocks presented in (2.26) extends pre-

vious results obtained in [19] where a simplified setting, sufficient to derive the operator

algebra, was considered, namely, two highest- and two lowest-weight operators with j1 = j4

and j2 = j3. Indeed, we have computed the β − γ ghost contributions for generic config-

urations of fields, only restricted by the assumption of one highest-weight state and the

requirement of arbitrary positive integer numbers of screenings. To this aim, the explicit

computation of the ghost system involved in the three-point functions that was presented

15Additional indications that (3.18) holds beyond the semiclassical limit are given by the fact that the

OPE leading to this expression in the bootstrap approach to the H+
3 -WZNW model implemented in [2]

reproduces the well-known fusion rules of admissible degenerate representations and by the results on the

structure of the factorization of string theory on AdS3 in [4].
16The analytic continuation leading to (3.23) cannot be directly implemented in the semiclassical limit

for (3.25).
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in [1], although not strictly necessary to obtain the Clebsch-Gordan coefficients, turned

out to be a useful starting point to address the computation of these higher-point func-

tions. Actually, unlike the case of the three-point functions, where the full form of the

kinematical factor follows from the SL(2) space-time symmetry of the model, the ghost

correlators give a non-trivial dependence on the coordinates to the conformal blocks of the

four-point amplitudes.

As discussed in section 2, relaxing the highest-weight condition assumed for one of the

operators turns the elementary symmetric polynomials in (2.20) into Schur polynomials

and the coefficients given in (2.17) must be replaced by the most general expression (A.5).

Although the identities (2.24), (2.30) and (2.33) that we have derived for the elementary

symmetric polynomials cannot be easily extended to the general case, the z, z → 0 limit of

the integrals (2.12) has been computed in [34] and then the conformal blocks for four generic

states can be reconstructed along similar steps as those we have followed in subsection

2.3. In any case, we have shown in section 3 that the leading terms in the factorization

limit can be identified with products of three-point functions and then, from (3.4) it is

straightforward to see that the Selberg integrals in (2.37) must be replaced by combinations

of Aomoto integrals in the amplitude involving four global descendants or their spectral

flow images with spin values adding up to an integer number.

Besides the ambiguities involved in the analytic continuation needed to obtain ampli-

tudes of arbitrary external states, the Coulomb gas method suffers from the disadvantage

of requiring quite a bit of tedious algebra if compared to the bootstrap approach. Nev-

ertheless, despite these problems, we were able to present an alternative derivation of the

expression obtained for the four-point functions in [2, 3, 14]. Indeed, we have shown that

for special configurations of fields, the semiclassical limit of the leading terms of the four-

point function may be rewritten as an integral over the spins of the intermediate states.

Actually, the expression (3.18) obtained in section 3 is valid for fields satisfying (3.11)

and (3.12) and for other values of the kinematical parameters it must be defined by the

analytic continuation discussed in [3], i.e., the large-k limit of the leading terms of the

amplitude are given by (3.18) plus the contributions of all the poles that cross the inte-

gration contour. This result reproduces in the m−basis the x−basis amplitude for the H+
3

model obtained in [14] in the mini-superspace approximation. The explicit Coulomb gas

calculation that we have presented here can thus be considered as an independent check of

the factorization ansatz based on the OPE of normalizable primary fields proposed in [2, 3]

for the H+
3 -WZNW model.

The procedure followed in section 3 to convert the discrete sums into the integral ex-

pression (3.18) provides a possible resolution of the problem raised in [19] regarding the

ambiguity involved in the analytic continuation of amplitudes containing states with ratio-

nal spin values in the SU(2) CFT. Moreover, it gives an alternative route to the use of the

fractional calculus introduced in [21]. Furthermore, since (3.18) was directly deduced in the

m−basis, it gives support to the process implemented in [30, 36] to transform (1.2) from the

x−basis and helps clarify the related questions raised in the introduction about exchanging

the order of summation and integration as well as convergence of the integral transform.

Following [4, 30], we have argued that the factorization into products of spectral
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flow preserving or violating three-point functions gives equivalent contributions to the

w-conserving four-point functions and we proved this statement in a particular set of am-

plitudes using the Coulomb gas realization. Indeed, we have shown that the leading terms

in the factorization limit of the discrete sums in (2.37) for certain amplitudes can be rewrit-

ten alternatively as a sum of products of two w = 0 or of one w = 1 and one w = −1

three-point functions. This result provides an independent confirmation of the factoriza-

tion ansatz proposed in [30] and of the observation that w-conserving correlators in the

AdS3-WZNW model are to be obtained from correlators in the H+
3 -WZNW model through

analytic continuation, although the spectral flow representations are not contained in the

spectrum of the Euclidean model. Furthermore, it provides additional support for the

proposal that (3.18) also holds for finite k, beyond the semiclassical limit.

Not having achieved a closed expression for the four-point functions cannot be at-

tributed to the method. Neither in the less complicated cases of Liouville theory or H+
3 -

WZNW model an explicit closed formula is known. Although important progress has

recently been achieved in the former theory through the identification of the conformal

blocks with Nekrasov’s partition function of certain N = 2 superconformal field theo-

ries [5, 6], the available amplitude is decomposed into structure constants and s−channel

conformal blocks that have to be numerically computed with the techniques developed

in [10]. The existence of an interesting explicit formula for generic four-point functions in

the AdS3-WZNW model also seems unlikely.

It would be interesting to extend the procedures developed in this paper to gain

more insights into four-point functions and conformal blocks and to start understanding

w−violating amplitudes in order to solve the AdS3-WZNW model. Indeed, there are sev-

eral open problems yet. The equivalence between factorizations involving w-conserving or

w-violating three-point functions implies that the OPE (3.18) is actually equivalent to the

OPE of normalizable states of the H+
3 -WZNW model proposed in [2, 3] when inserted into

w-conserving amplitudes. But the latter OPE leads to vanishing w-violating amplitudes, in

contradiction with the spectral flow selection rules and the explicit computations performed

in [1, 4]. Moreover, the fusion rules obtained from the H+
3 -OPE by analytic continuation

are not closed in the spectrum of the AdS3-WZNW model and they are not compatible

with the identification D̂±,w
j = D̂∓,w±1

−k/2−j implied by the spectral flow symmetry [17, 30].

Furthermore, the OPE (3.18) has to be truncated in order to avoid inconsistencies with the

spectral flow symmetry and the physical mechanism determining the decoupling is still not

understood. The computation of w-violating four-point functions might shed some light on

these issues. Although it requires the insertion of a spectral flow operator and consequently

involves the evaluation of a five-point function, we hope to be able to address this problem

in the near future applying the techniques developed in this paper.

We expect that these techniques might also be useful to further deepen our knowledge

on properties of non-rational CFTs and methods to deal with them.
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A Appendices

A.1 Evaluation of m-dependent coefficients: the general case

For completeness, in this appendix we compute the coefficients Cnr(z) in (2.13) for generic

configurations of fields.

Consider the determinant of the matrix (aij)
p
i,j=1 made up by the first p rows and p

columns of the matrix (aij(z))s−n
i,j=1 with entries defined in (2.14). Let us denote it dp(z). As

d0
p(z), this is a polynomial in z of degree p but satisfying the following recurrence relation:

dp(z) = ℓs−n−r+p
1 (z)dp−1(z) − ℓs−n−r+p−1

2 (z)ℓs−n−r+p
0 (z)dp−2(z), (A.1)

with boundary conditions d1(z) = ℓs−n−r+1
1 (z) and d2(z) = ℓs−n−r+1

1 (z)ℓs−n−r+2
1 (z) −

ℓs−n−r+1
2 (z)ℓs−n−r+2

0 (z). To deduce (A.1) we have used that (aij(z))pi,j=1 is a tridiago-

nal matrix.

It is convenient to introduce the following “shifted” parameters:




α′ = −s + n + r + α

β′ = −s + n + r + α + β

γ′ = −s + n + r + α + γ,

and rewrite (A.1) more explicitly as

dp(z) =
[
(1 − p + β′) + (1 − p + γ′)z

]
dp−1(z) − (p − 2 − β′ − γ′)(p − 1)zdp−2(z)

+α′(α′ − β′ − γ′ − 1)zdp−2(z), (A.2)

with d1(z) = β′ + γ′z and d2(z) = β′(β′ − 1) + 2β′γ′z + γ′(γ′ − 1)z2 + α′(α′ − β′ − γ′ − 1)z.

For the case α′ = 0 we have found the solution of this recurrence in (2.16), namely,

d0
p(z) =

Γ(β′ + 1)

Γ(β′ − p + 1)
2F1

[
−p,−γ′

β′ − p + 1

∣∣∣∣∣ z
]

.

Defining dp(z) = d0
p(z) + ǫp(z) and replacing this into (A.2) we obtain the following

recurrence for ǫp(z):

ǫp(z) =
[
(1 − p + β′) + (1 − p + γ′)z

]
ǫp−1(z)

−(p − 2 + α′ − β′ − γ′)(p − 1 − α′)zǫp−2(z) + α′(α′ − β′ − γ′ − 1)zd0
p−2,

with ǫ1(z) = 0 and ǫ2(z) = α′(α′ − β′ − γ′ − 1)z.
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Inductively solving this much simpler recurrence it is possible to show that

dp(z) =

[p/2]∑

t=0

(
p − t

t

)
Γ(α′ + 1)Γ(α′ − β′ − γ′ + t − 1)

Γ(α′ − t + 1)Γ(α′ − β′ − γ′ − 1)
d
[t]
p−2t(z), (A.3)

where we have defined

d[t]
p (z) =

Γ(β′ − t + 1)

Γ(β′ − t − p + 1)
2F1

[
−p,−γ′ + t

β′ − t − p + 1

∣∣∣∣∣ z
]

.

Therefore, the correlation function involving four generic states is given by

Aw=0
4

[
j1, j2, j3, j4

m1,m2,m3,m4

]
=Γ(−s)|z|4j1j2ρ|1 − z|4j2j3ρ

s∑

n,n=0

s−n∑

r,r=0

[Cnr(z)×c.c.]Jnr,nr(z, z),

(A.4)

with

Cnr = (−1)s−n−r Γ(α + 1)

Γ(α − s + n + r + 1)

Γ(s − α − β − γ)

Γ(s − n − α − β − γ)

×
∞∑

t=0

(
s − n − t

t

)
Γ(α′ + 1)Γ(α′ − β′ − γ′ + t − 1)

Γ(α′ − t + 1)Γ(α′ − β′ − γ′ − 1)
d
[t]
s−n−2t(z) zs−n−r (A.5)

where we have used, again, that the sum in (A.3) can be set to ∞.

Recall that this expression strictly corresponds to a correlator with integer number of

screening operators, i.e., s = j1 + j2 + j3 + j4 + 1 ∈ N0. The four-point function for general

kinematic configurations is assumed to be given by an analytic continuation of (A.4) for

non-integer values of s, as discussed in section 3.

A.2 Poles of the three-point function and the reflection symmetry

Let us assume that the three-point function Aw=0
3

[
j1, j2, j3

m1,m2,m3

]
has a pole located at

j3 = f(j1, j2). It is clear that it could also have a pole at j3 = f(j1,−1 − j2) and that

Resj3=f(j1,−1−j2)Aw=0
3

[
j1, j2, j3

m1,m2,m3

]
=

{
Resj3=f(j1,j2)Aw=0

3

[
j1,−1 − j2, j3

m1,m2,m3

]}

j2→−1−j2

.(A.6)

From [17] we know that

Aw=0
3

[
j1,−1 − j2, j3

m1,m2,m3

]
= B(j2) cj2

m2,m2
Aw=0

3

[
j1, j2, j3

m1,m2,m3

]
.

Inserting this expression into (A.6) we obtain

Resj3=f(j1,−1−j2)Aw=0
3

[
j1, j2, j3

m1,m2,m3

]

= B(−1 − j2) c−1−j2
m2,m2

{
Resj3=f(j1,j2)Aw=0

3

[
j1, j2, j3

m1,m2,m3

]}

j2→−1−j2

.
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This equation displays the relation between the residues of the three-point function asso-

ciated to poles related by reflection.

If the state inserted at z2, z2 = 1 lies in a discrete series, it follows that

Aw=0
3

[
j1, j2, j3

m1,m2,m3

]
is actually regular at j3 = f(j1,−1 − j2) since in this case

c−1−j2
m2,m2

vanishes.
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